手机扫码,微信咨询!
,氡分析仪,连续测氡仪,连续氡监测仪,氡放射性检测仪,氡连续测量仪   
电话热线: 86-021-69515711
传真热线: 86-021-69515711

    放射性同位素

    2008/12/6 13:41:00

    一、放射性同位素的特点
      众所周知,放射性同位素(radiosotlope)是不稳定的,它会。放射性同位 素的原子核很不稳定,会不间断地、自发地放射出射线,直至变成另一种稳定同位素,这就是所谓核衰变。放射性同位素在进行核衰变的时候,可放射出α射线、 β射线、γ射线和电子俘获等,但是放射性同位素在进行核衰变的时候并不一定能同时放射出这几种射线。核衰变的速度不受温度、压力、电磁场等外界条件的影响,也 不受元素所处状态的影响,只和时间有关。放射性同位素衰变的快慢,通常用半衰 期来表示。半衰期(half-life)即一定数量放射性同位素原子数目减少到其初始值一半时所需要的时间。如磷-32的半衰期是14.3天,就是说,假使原来有100万个磷-32 原子,经过14.3天后,只剩下50万个了。半衰期越长,说明衰变得越慢,半衰期越 短,说明衰变得越快。半衰期是放射性同位素的一特征常数,不同的放射性同位素有不同的半衰期,衰变的时候放射出射线的种类和数量也不同。

    常用同位素的特征

    同位素 符号 半衰期 β射线能量(MeV
    -3 3H 12.3 0.018
    -14 14C 5720
    0.156
    磷-32 32P 14.3
    1.71
    硫-35 35S 87.1
    0.167
    碘-131 131I 8.05 0.605

    人造元素一览表

    原子序数 元素名称 元素符号 发现者 发现年代 半衰期
    43
    Tc 西格雷,佩里埃 1937 Tc97 260万年
    61
    Pm 马林斯基等 1945 Pm145 18

    85
    At 西格雷,科森等 1940 At210 81小时

    87
    Fr 佩雷 1939 Fr212 20分钟

    93
    Np 麦克米伦 1940 Np237 214万年

    94
    Pu 麦克米伦,西博格 1940 Pu244 76×107

    95
    Am 西博格,吉奥索 1944 Am243 7370

    96
    Cm 西博格,吉奥索 1944 Cm247 154×107

    97
    Bk 西博格,汤普生等 1949 Bk247 1400

    98
    Cf 西博格,吉奥索等 1950 Cf251 900

    99
    Es 西博格,吉奥索 1955 Es254 276

    100
    Fm 西博格,吉奥索 1955 Fm257 82

    101
    Md 吉奥索 1955 Md258 55

    102
    No 弗列罗夫等 1957 No259 58分钟

    103
    Lr 吉奥索 1961 Lr260 3分钟

    104
      Rf 弗列罗夫,吉奥索 1964,1968 1分钟

    105
      Db 弗列罗夫,吉奥索 1970,1970 40

    106
      Sg 美,苏 1974 09

    107
      Bh 联邦德国 1981 103

    108
      Hs 联邦德国 1984 103

    109
      Mt 联邦德国 1982 5×103秒  

    二、放射性强度及其度量单位

     
      放射性同位素原子数目的减少服从指数规律。随着时间的增加,放射性原子的数目按几何级数减少,用公式表示为: NN0e- λt这里,N为经过t时间衰变后,剩下的放射性原子数目,N0为初始的放射性原子数目,λ为衰变常数,是与该种放射性同位素性质有关的常数,λ=y(t)e-0.693t/τ,其中τ指半衰期。放射性同位素不断地衰变,它在单位时间内发生衰变的原子数目叫做放射性强度(radioactivity),放射性强度的常用单位是居里(curie),表示在1秒钟内发生3.7×1010次核衰变,符号为Ci。    1Ci=3.7×1010dps=2.22×1012dpm    1mCi=3.7×107dps=2.22×109dpm    1μCi=3.7×104dps=2.22×106dpm   1977年国际放射防护委员会(ICRP)发表的第26号出版物中,根据国际辐射单位 与测量委员会(ICRU)的建议,对放射性强度等计算单位采用了国际单位制(SI), 我国于1986年正式执行。在SI中,放射性强度单位用贝柯勒尔(becquerel)表示,简称贝可,为1秒钟内发生一次核衰变,符号为Bq1Bq=1dps=2.703×10-11Ci该单位在实 际应用中减少了换算步骤,方便了使用。
    三、射线与物质的相互作用

     
      放射性同位素放射出的射线碰到各种物质的时候,会产生各种效应,它包括 射线 对物质的作用和物质对射线的作用两个相互联系的方面。例如,射线能够使照相底片和核子乳胶感光;使一些物质产生荧光;可穿透一定厚度的物质,在穿透物质的过程 中,能被物质吸收一部分,或者是散射一部分,还可能使一些物质的分子发生电离; 另外,当射线辐照到人、动物和植物体时,会使生物体发生生理变化。射线与物质的相互作用,对核射线来说,它是一种能量传递和能量损耗过程,对受照射物质来说, 它是一种对外来能量的物理性反应和吸收过程。   
    各种射线由于其本身的性质不同,与物质的相互作用各有特点。这种特点还常与物质的密度和原子序数有关。α射线通过物质时,主要是通过电离和激发把它的辐射能量转移给物质,其射程很短,一个1兆电子伏(1MeV)的α射线,在空气中的射程约1.0<厘米,在铅金属中只有23微米(um),一张普通纸就能将α射线完全挡住,但α射线的能量能被组织和器官全部吸收。β射线也能引起物质电离和激发,与α射线 的能量相同的β射线,在同一物质中的射程比α要长得多,如>1MeVrβ射线,在空气 中的射程是10,高能量快速运动的β粒子,如磷-,能量为1.71MeV遇到物质,特别是突然被原子序数高的物质(如铅,原子序数为82)阻止后,运动方向会发生改变,产生轫致辐射。轫致辐射是一种连续的电磁辐射,它发生的几率与β射线的能量 和物质的原子序数成正比,因此在防护上采用低密度材料,以减少轫致辐射。β射线能被不太厚的铝层等吸收。γ射线的穿透力最强,射程最大,1MeVr射线在空气中的射程约有米之远,r射线作用于物质可产生光电效应、康普顿效应和电子对效应,它不会被物质完全吸收,只会随着物质厚度的增加而逐渐减弱。  

     

    放射性同位素的相关产品:

    ,氡分析仪,连续测氡仪,连续氡监测仪,氡放射性检测仪,氡连续测量仪

    上海仁日辐射防护设备有限公司(Shanghai Renri Radiation Protection Equipment Co., Ltd.) 上海仁日科贸有限公司 版权所有

    电话:021-69515711 手机:13818065015  传真:021-69515712  Email:market@renri.com.cn

    QQ:1993509414 地址:上海市曹安路1509号福瑞大厦516室 邮编:201824

    沪ICP备16037569号-2